Oscar Mendez Bonilla

Reduced-quaternion inframonogenic functions on the ball

Resumen

A function from a domain in to the quaternions is said to be inframonogenic if
, where
. All inframonogenic functions are biharmonic. In the context of functions taking values in the reduced quaternions, we show that the inframonogenic homogeneous polynomials of degree form a subspace of dimension . We use the homogeneous polynomials to construct an explicit, computable orthogonal basis for the Hilbert space of square-integrable inframonogenic functions defined in the ball in .

 

Autores

  • C. Álvarez-Peña
  • J. Morais
  • R. Michael Porter

 

Revista Math. Meth. Appl. Sci.

https://doi.org/10.1002/mma.9600

Artículo anterior Biquaternionic Treatment of Inhomogeneous Time-Harmonic Maxwell’s Equations Over Unbounded Domains.
Siguiente artículo Computing sandpile configurations using integer linear programming
Print
803 Califica este artículo:
Sin calificación
Please login or register to post comments.
CONTÁCTENOS

Logo Cinvestav

Av. Instituto Politécnico Nacional 2508,
Col. San Pedro Zacatenco,
Alcaldía Gustavo A. Madero,
Ciudad de México, Código Postal 07360

Tel. +52 55 5747 3800

Cinvestav © 2025
02/10/2025 01:21:03 p. m.