Learning smooth dendrite morphological neurons for pattern classification using linkage trees and evolutionary-based hyperparameter tuning
Leobardo Pérez Martínez
/ Categorías: Unidad Tamaulipas

Learning smooth dendrite morphological neurons for pattern classification using linkage trees and evolutionary-based hyperparameter tuning

Samuel Omar Tovias-Alanis, Humberto Sossa and Wilfrido Gómez-Flores.

Abstract

The current learning approach for smooth dendrite morphological neurons (DMNs) determines dendrite parameters using k-means clustering, which is non-reproducible due to its stochastic nature, risking falling into local minima. To overcome this issue, we introduce a DMN learning approach based on a deterministic hierarchical clustering method, which builds a linkage tree for each class of patterns. In addition, a micro genetic algorithm automatically tunes the cut-off points in the linkage trees hierarchy to create suitable clusters of dendrites. The classification experiments consider 40 real-world datasets. The proposed approach outperforms three DMN models in classification performance and is quite competitive with a hybrid morphological-linear perceptron, multilayer perceptron, random forest, and support vector machine. Therefore, the proposed method is a suitable alternative for pattern classification applications.

 

https://doi.org/10.1016/j.patrec.2023.05.024

Artículo anterior Population-based iterated greedy algorithm for the S-labeling problem
Siguiente artículo Improving the Classification Performance of Dendrite Morphological Neurons
Print
196 Califica este artículo:
Sin calificación
Orden de presentación (texto):2023, 08
Please login or register to post comments.
CONTÁCTENOS

Logo Cinvestav

Av. Instituto Politécnico Nacional 2508
Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero
Ciudad de México, C.P. 07360
Apartado Postal: 14-740, 07000 Ciudad de México

Tel. +52 (55) 5747 3800

Cinvestav © 2025
05/03/2025 12:40:47 p. m.